
Telemetry Data Simulation and Packet Validation
*Multithreading Data Parser

1st Shivam Jadhav
dept. Computer Science (of Aff.)

University Of North Texas (of Aff.)
Denton, United States

Shivamjadhav@my.unt.edu

Abstract—This project implements a real-time telemetry sys-
tem for fleet management, enabling secure communication be-
tween multiple IoT devices and a central server. Using socket-
based TCP/IP communication, the system processes and stores ve-
hicle data, including location, fuel levels, and speed, with CRC32
data integrity checks. Multithreading allows the server to handle
data from over 100 devices simultaneously. The system supports
live tracking and detailed analysis of fleet performance, route
optimization, and driving behavior, offering valuable insights for
logistics and fleet management.

Index Terms—telemetry, fleet management, IoT (Internet of
Things), Data Integrity, TCP/IP Communication, Real-Time Data
Transmission, Data Parsing, Multithreading,Vehicle Tracking

I. INTRODUCTION

This project develops a system to manage and analyze
data from multiple IoT-enabled fleet devices. It utilizes secure
TCP/IP socket communication to transmit real-time data from
100+ devices, including fuel levels, speed, and location. The
server processes and stores this data for analysis, providing
insights into fleet performance, fuel efficiency, and vehicle
behavior. Using multithreading, the system ensures scalability
and efficient data handling. This solution enhances fleet man-
agement by offering real-time tracking, route optimization, and
performance monitoring, with a focus on data integrity and
accurate packet parsing.

II. RELATED WORK

The concept of real-time fleet management is explored
in many research papers, such as the work by [1] which
discusses Fleet Management and Control Systems (FMCS)
and focuses on improving safety, efficiency, and productivity
in public transport using Intelligent Transportation Systems
(ITS). Another relevant work [2] discusses an IoT-based
fleet management system that integrates real-time tracking,
predictive maintenance, and fuel efficiency monitoring. This
approach utilizes a combination of sensor networks and cloud-
based platforms to provide accurate fleet data analysis and
management. The system is designed to enhance decision-
making in fleet management by offering better insights into
vehicle health, driver behavior, and route optimization.

While these studies emphasize vehicle tracking and control
for public transport in cities, this project extends the ability

Identify applicable funding agency here. If none, delete this.

Fig. 1. workflow

to provide bandwidth capable of handling many IoT devices,
which communicate via 2G SIM cards and send data packets
over the network to a server. This enables fleet owners to
receive live data from entire fleets or multiple organizations,
allowing for real-time analysis of fleet data. We utilize multi-
threading, socket-based communication, and data verification
techniques to improve scalability and performance for fleet
management systems.

III. ARCHITECTURE DESIGN

This project features three components: a device simulator, a
data acquisition server, and a data distribution server, as shown
in Fig. 1. Together, they offer a unified solution for managing
various devices, focusing on device authentication, data in-
tegrity, and data parsing. Decoupling the data acquisition and
distribution servers enhances overall system efficiency.

Devices are configured to send data every two seconds
through a program that constructs a data packet using a
custom ”Packet” class. This packet simulates parameters like
sensor readings and location. The device connects to the server
via Socket.IO, calculates the CRC, and sends the completed
packet.

Multiple devices can connect to a Data Acquisition (DAC),
which verifies data integrity using a packet number. If the
client receives a positive acknowledgment, it can send another
packet; otherwise, it will resend the last one.

The data distribution server then separates the data packet
into a header, body, and CRC, parsing the information to

extract sensor data and device metadata, which it stores in
the local file system for future use.

IV. DATA PACKET PROTOCOL V1.0

To send data effectively, we need to design a data packet
protocol before implementation. This design should ensure that
information is compressed into as few bytes as possible, as
network bandwidth is limited and IoT devices have restricted
memory. Compiling all sensor data and metadata into a packet
must facilitate easy retrieval and minimize overhead during
transmission, which is crucial for efficient network communi-
cation. Our data packet protocol version 1.0 consists of three
components. Table I depicts each section’s memory in bytes,

TABLE I
DATA PACKET STRUCTURE

Section Description Size (Bytes)
Header Contains metadata for data identification 23
Body Main content/data payload 24
CRC Cyclic Redundancy Check for data integrity 4

with a total data packet size of 51 bytes. Further details of
each field in each section for the data packet are described in
Table II.

TABLE II
DETAILED DATA PACKET STRUCTURE

Section Field Size (Bytes)
Header Packet Start 1

Packet Length 1
Header Length 1
Packet Number 4

Protocol Version (ASCII) 4
IMEI 7

Timestamp 4
Header End 1

Body Start of Body 1
Body Length 1
Timestamp 4

Latitude (Lat) 4
Longitude (Lng) 4

Speed 4
Fuel 4

Active Status 1
End of Body 1

CRC CRC Check 4

V. SYSTEM DESIGN AND ARCHITECTURE

Overview of Components

A. Device Simulator

here in this project report we shall make use of device sim-
ulator which is an essential component The device simulator
mimics multiple vehicles, each sending periodic data packets
to the server. Each packet consists of metadata and sensor
data, including fuel levels, speed, and location. The data is
structured in a predefined format, which includes a header
(with IMEI, timestamp, etc.) and a body (with sensor data).

B. Data Acquisition Server

This server receives data from the devices using TCP/IP
socket communication. It is capable of handling connections
from over 100 devices simultaneously using multithreading.
The server performs packet verification, parses the data, and
stores it for further analysis.

C. Data Distribution/Parser

After receiving the data, the server validates the integrity
using CRC32, then parses the packet to extract relevant data
points like fuel usage, speed, and location. The parsed data is
stored in a database for later analysis.

VI. METHODS AND IMPLEMENTATION

A. Device Simulator

1 import random
2 from datetime import datetime as dt
3
4 class DataPacket:
5 def __init__(self, imei, protocolversion=’v1’,

packetcount=0, packet_frequency=2, lat=0,
lng=0, fuellevel=0, active=1, speed=0):

6 self.imei = imei
7 self.protocolversion = protocolversion
8 self.packetcount = packetcount
9 self.fuellevel = fuellevel if fuellevel else

random.randint(0, 100)
10 self.lat = lat if lat else random.uniform

(20, 90)
11 self.lng = lng if lng else random.uniform

(-180, 180)
12 self.active = active
13 self.speed = speed if speed else random.

randint(0, 100)
14 self.packet_number = 0
15 self.packet_frequency = packet_frequency
16
17 def get_lat(self):
18 self.lat += random.uniform(-0.00001,

0.00001) # Move a few meters
19 print(f"Lat: {self.lat}")
20 p = float_to_bytes(self.lat)
21 print("len== lat=", len(p))
22 return p
23
24 def get_lng(self):
25 self.lng += random.uniform(-0.00001,

0.00001)
26 print(f"Lng: {self.lng}")
27 return float_to_bytes(self.lng)
28
29 def get_speed(self):
30 self.speed += random.uniform(-0.5, 0.5)
31 print(f"Speed: {self.speed}")
32 return float_to_bytes(self.speed)
33
34 def get_fuel_level(self):
35 self.fuellevel += random.uniform(-2.5, 0)
36 print(f"Fuel level: {self.fuellevel}")
37 return float_to_bytes(self.fuellevel)
38
39 def get_packet_number(self):
40 max_packet_number = 60 * 60 * 24
41 max_packet_number = max_packet_number //

self.packet_frequency
42 if self.packet_number >= max_packet_number:
43 self.packet_number = 0
44 self.packet_number += 1

45 return int_to_bytes(self.packet_number, 4)
46
47 def get_header(self):
48 header = b’$’
49 header += int_to_bytes(51, 1)
50 header += int_to_bytes(23, 1)
51 header += self.get_packet_number()
52 header += b’v1.0’
53 header += int_to_bytes(self.imei, 7)
54 header += int_to_bytes(int(dt.now().

timestamp()), 4)
55 header += b’@’
56 return header
57
58 def get_body(self):
59 packet = b’&’ # Start byte
60 packet += int_to_bytes(24, 1)
61 packet += int_to_bytes(int(dt.now().

timestamp()), 4)
62 packet += self.get_lat()
63 packet += self.get_lng()
64 packet += self.get_speed()
65 packet += self.get_fuel_level()
66 packet += self.active.to_bytes(1, byteorder=

’big’)
67 packet += b’#’ # End byte
68 return packet
69
70 def generate_packet(self):
71 header = self.get_header()
72 body = self.get_body()
73 print(f"Header: {header}")
74 print(f"Body: {body}")
75 crc = calculate_crc32(header + body)
76 crc = int_to_bytes(crc, 4)
77 return header + body + crc

This custom class is designed to create a simulated IoT device
that forms fixed-size data packets for transfer over a socket
connection to a server. It allows us to test the server’s ability
to parse information from these data packets. This setup
can support an unlimited number of simulated devices. Once
physical devices are available, we can test the server before
deploying production IoT devices. Through this process, we
can assess the server’s stress tolerance and its ability to handle
errors during data transmission, as well as evaluate its fault
tolerance.

B. Data Aquisition Server

1 import socket
2 import threading
3 import sys
4 from packet_handler import handle_client
5 from utils import monitor_input
6
7 # Global event to control server shutdown
8 server_running = threading.Event()
9 client_threads = [] # List to keep track of all

threads
10
11 # Function to run the server
12 def run_server(host=’0.0.0.0’, port=12345):
13 with socket.socket(socket.AF_INET, socket.

SOCK_STREAM) as server_socket:
14 server_socket.bind((host, port))
15 server_socket.listen(5) # Listen for

incoming connections
16 print(f"Server is listening on {host}:{port}

")
17

18 while server_running.is_set(): # Keep
accepting new clients if server is
running

19 conn, addr = server_socket.accept()
20 client_thread = threading.Thread(target=

handle_client, args=(conn, addr))
21 client_thread.start()
22 client_threads.append(client_thread)
23 print(f"Started thread for client {addr}

")
24
25 # Function to stop the server gracefully
26 def stop_server():
27 print("\nStopping server...")
28 server_running.clear() # Stop the server
29 print("Server stopped.")
30
31 # Wait for all client-handling threads to finish
32 for thread in client_threads:
33 thread.join()
34
35 if __name__ == "__main__":
36 server_running.set()
37
38 input_thread = threading.Thread(target=

monitor_input, args=(stop_server,))
39 input_thread.daemon = True # Daemonize the

input thread so it ends when the program
ends

40 input_thread.start()
41
42 # Start the server
43 run_server()
44
45 # Once the server stops, exit the program
46 print("Server has completely stopped. Exiting

program.")
47 sys.exit(0)

This server acts as the first contact point for IoT devices, and
our primary goal is to test the simulator. Using Socket.IO,
we can generate unlimited devices that send data to the DAC
server. The server tests the data packets and, if errors are
found, it sends an error code. If the data is error-free, it sends
an acknowledgment with the packet number. If the device
receives this acknowledgment with the same packet number,
it proceeds to send another packet from memory.

C. Data Parser

1 from utils import bytes_to_int,bytes_to_float
2 def parse_header(header):
3 packet_number=bytes_to_int(header[3:7])
4 protocol_version=header[7:11].decode()
5 imei=bytes_to_int(header[11:18])
6 timestamp=bytes_to_int(header[18:22])
7 return {’packet_number’:packet_number,
8 ’protocol version’:protocol_version,
9 ’imei’:imei,

10 ’timestamp’:timestamp
11 }
12 def parse_body(body):
13 start_byte=body[0:1].decode()
14 if start_byte!=’&’:
15 return None
16 body_length=bytes_to_int(body[1:2])
17 timestamp=bytes_to_int(body[2:6])
18 latitude=bytes_to_float(body[6:10])
19 longitude=bytes_to_float(body[10:14])
20 speed=bytes_to_float(body[14:18])
21 fuel_level=bytes_to_float(body[18:22])

22 return {’start_byte’:start_byte,
23 ’body_length’:body_length,
24 ’timestamp’:timestamp,
25 ’latitude’:latitude,
26 ’longitude’:longitude,
27 ’speed’:speed,
28 ’fuel_level’:fuel_level
29 }
30 # Function to parse the received packet and return

structured data
31 def parse_packet(packet):
32 try:
33 if packet[0:1].decode()==’$’:
34 packet_length=bytes_to_int(packet[1:2])
35 header_length=bytes_to_int(packet[2:3])
36 header=packet[0:header_length]
37 body=packet[header_length:]
38 header_data=parse_header(header)
39 body_data=parse_body(body)
40 packet_data={**header_data,**body_data}
41 return packet_data,header_data[’

packet_number’]
42
43
44 return None,None
45 except Exception as e:
46 print(f"Unexpected error: {e}")
47 return None,None

This data parser service will extract information from data
packets and distribute it to various services where it can be
utilized. For instance, the data can be stored in a NoSQL
database for analysis purposes such as fuel monitoring, fuel
consumption analysis, vehicle performance analysis, and cost
evaluation of vehicle routes. Additionally, by integrating with
Firebase, this service can provide a live tracking solution for
fleet owners in the logistics sector.

VII. RESULTS AND EVALUATION

A. System Performance

The system successfully handled connections from 100+ de-
vices simultaneously without noticeable latency. Multithread-
ing ensured that the server was responsive even under heavy
load. The CRC32 verification mechanism efficiently detected
and discarded corrupted packets. The parsing mechanism was
able to handle large data sets with minimal overhead, storing
the parsed data into the database for real-time analysis.

B. Fleet Performance Analysis

The system tracked vehicle locations in real-time, displaying
a map showing the movement of each vehicle. Fuel utilization
and vehicle speed data were analyzed to identify performance
trends and optimize fleet operations.

VIII. CONCLUSION

This project successfully addressed the challenges of man-
aging real-time data from a large fleet of vehicles. By utiliz-
ing TCP/IP socket communication, multithreading, and data
integrity mechanisms, the system ensures reliable communi-
cation, data verification, and real-time performance analysis.
The system provides significant benefits for fleet management
and logistics optimization.

IX. FUTURE WORK

A. Future improvements could include

• Implementing predictive maintenance algorithms
• Real-time anomaly detection in fleet performance
• Integration with advanced route optimization tools
• Expanding the database to support historical data analysis

REFERENCES

[1] A. of the Paper, “Fleet management and control systems (fmcs),” in
2019 2nd Latin American Conference on Intelligent Transportation
Systems (ITS LATAM). IEEE, 2019, pp. 1–6. [Online]. Available:
https://ieeexplore.ieee.org/document/8721347

[2] P. Singh, M. S. Suryawanshi, and D. Tak, “Smart fleet management
system using iot, computer vision, cloud computing and machine learning
technologies,” in 2019 IEEE 5th International Conference for Conver-
gence in Technology (I2CT), 2019, pp. 1–8.

